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Commensurate and incommensurate antiferromagnetic fluctuations in the two-dimensional repulsive
t-t�-Hubbard model are investigated using functional renormalization group equations. For a sufficient devia-
tion from half-filling we establish the existence of local incommensurate order below a pseudocritical tem-
perature Tpc. Fluctuations not accounted for in the mean-field approximation are important—they lower Tpc by
a factor �2.5.
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The two-dimensional Hubbard model1–3 has attracted
much interest in the past two decades because it is a candi-
date model for the CuO2-planes in the high Tc cuprates and
may exhibit d-wave superconducting order4,5 at finite chemi-
cal potential. The model shows other interesting order struc-
tures such as incommensurate antiferromagnetism which ap-
pears close to half-filling.

We focus on repulsive interactions U and not too large
next-to-nearest neighbor hopping t�, where the model is an
antiferromagnet at half-filling. Not so far away from half-
filling a more complicated form of antiferromagnetism,
namely, incommensurate antiferromagnetism is suggested by
mean-field computations and numerical studies for finite
systems.6–15 Incommensurate antiferromagnetism is related
to the existence of spiral magnetic states which occur at large
values of U.16–18 Experimentally, incommensurate antiferro-
magnetism manifests itself in the peak structure of the mag-
netic structure factor which is accessible via neutron scatter-
ing. It has been observed for a variety of high Tc cuprates,
for experimental and numerical results see.19–25

In the temperature region where local incommensurate
antiferromagnetic order supposedly sets in, the effective in-
teraction between the electrons is large such that perturbative
methods are not reliable. Collective fluctuations of electron-
hole pairs in the antiferromagnetic channel play an important
role. Since they are omitted in a mean-field treatment one
may doubt whether the mean-field results for incommensu-
rate antiferromagnetism are reliable. For these reasons we
investigate the issue of incommensurate antiferromagnetism
by a method that is intrinsically nonperturbative and includes
effective collective bosonic fluctuations, namely, the func-
tional renormalization group for the “flowing action” �or
“average action”� �k.

26,27 For this scale dependent effective
action �or coarse grained free energy� the scale k indicates an
infrared cutoff such that only fluctuations with momenta
larger than k are effectively included. �Finally, one is inter-
ested in the limit k→0, where �k→0 equals the effective
action—the generating functional of 1PI-correlation
functions—including all fluctuations.� We will work in a ver-
sion where the dominant collective bosonic fluctuations are
represented by bosonic fields.28,29 Our model is equivalent to
the purely fermionic Hubbard model from which it is derived
by means of a Hubbard-Stratonovich transformation.30,31

Earlier studies employing the present framework have fo-
cused on the temperature dependence of commensurate anti-
ferromagnetic order,28 the Kosterlitz-Thouless transition in a

more general class of Hubbard-type models,32 and the gen-
eration of a coupling in the d-wave superconducting
channel.33 The role of incommensurate antiferromagnetic
fluctuations was not taken into account in this earlier work.
Functional renormalization group treatments of the Hubbard
model are more often given in a purely fermionic formula-
tion, see Refs. 34–39. Reference 36 is of particular interest
since, in accordance with the results described here, it also
reports on a region in the phase diagram where incommen-
surate spin density fluctuations dominate. The present paper
also includes an independent computation of the size of the
incommensurability that occurs.

Our ansatz for the flowing action includes contributions
for the electrons, for the bosons in both the antiferromagnetic
and d-wave superconducting channels, and for interactions
between fermions and bosons,

�k��� = �F,k��� + �a,k��� + �Fa,k��� + �d,k��� + �Fd,k��� .

�1�

The collective field �= �a ,d ,d� ,� ,��� describes fermion
fields � ,��, the “antiferromagnetic boson field” a and the
complex field d a finite expectation value of which signals
d-wave superconductivity. The fermionic kinetic term

�F,k = �
Q

�†�Q�PF�Q���Q� �2�

involves the inverse fermion propagator

PF�Q� = ZF�i� + ��q�� , �3�

where ��q�=−�−2t�cos qx+cos qy�−4t� cos qx cos qy de-
pends on the chemical potential � and the nearest and
next-to-nearest neighbor hopping parameters t and t� of the
Hubbard model. We employ a compact notation X= �� ,x�,
Q= �� ,q�,

�
X

= �
0

�

d��
x

, �
Q

= T �
n=−	

	 �
−



 d2q

�2
�2 ,

��X − X�� = ��� − ����x,x�,

��Q − Q�� = ��n,n��2
�2��2��q − q�� , �4�

where all components of X or Q are measured in units of the
lattice distance a or a−1. The discreteness of the lattice is

PHYSICAL REVIEW B 80, 014436 �2009�

1098-0121/2009/80�1�/014436�7� ©2009 The American Physical Society014436-1

http://dx.doi.org/10.1103/PhysRevB.80.014436


reflected by the 2
 periodicity of the momenta q. A scale
dependent fermionic wave function renormalization ZF is in-
cluded in Eq. �2�.

The purely antiferromagnetic bosonic term is described
by a kinetic term and a local effective potential

�a,k =
1

2�
Q

aT�− Q�Pa�Q�a�Q� + �
X

Ua,k�a� , �5�

where we employ a quartic effective potential Ua for a,

Ua�a� = m̄a
2� +

1

2
̄a�2, �6�

with �=a2 /2. The kinetic term Pa involves the Q-dependent
part of the inverse antiferromagnetic propagator and there-
fore contains the essential information about different kinds
of magnetism. Our treatment of this term is discussed in
detail below. Local antiferromagnetic order in domains of
size k−1 is signaled by a minimum of �a,k for a�Q��0. For
Q=0 this describes commensurate antiferromagnetism, while
a minimum for nonvanishing q in Q= �0,q� indicates incom-
mensurate antiferromagnetism. A Yukawa-like interaction
term couples the bosonic field to the fermions,

�Fa,k = − h̄a�K,Q,Q�
��K + � − Q + Q��

� a�K� · ��†�Q����Q��� , �7�

where the momentum vector � is given by �= �0,
 ,
�.
The bosonic field d is associated to Cooper-pairs in

the d-wave channel. It is described in more detail in32,33

where the exact form of �Fd can be found. In this note
we include the effect of d-wave fluctuations on the flow of
the fermionic and “antiferromagnetic” part of �k. We use
�d,k=�Qd��Q�Pd�Q�d�Q�+�XUd,k�d ,d�� with Ud�d ,d��
= m̄d

2�+ ̄d�2 /2 where �=d�d. Here we focus exclusively on
the emergence of �either commensurate or incommensurate�
magnetic order which occurs in the vicinity of half-filling.
The emergence of d-wave superconducting order at larger
values of ��� will be discussed in detail in a future publica-
tion. No superconductivity has been detected in the region of
the phase diagram studied here.

The dependence of the flowing action on the scale k is
described by an exact flow equation.26 Our ansatz �1� ap-
proximates the solutions to this functional differential equa-
tion. At the microscopic scale k=� the flowing action must
be equivalent to the microscopic action of the Hubbard
model. Since we want to eliminate the �constant� four-
fermion coupling U at k=� which, of course, has no contri-
butions exhibiting d-wave symmetry, the repulsive interac-
tion between the fermions must be contained in the

antiferromagnetic Yukawa coupling h̄a. In the bosonized pic-
ture one has, instead of the original four-fermion coupling U

a boson-mediated interaction term h̄a
2 / m̄a

2 which must be cho-
sen proportional to U. Since an additional sum over spin
directions has to be carried out it has to be chosen as U /3.
Thereby we have simply transcribed the original model into
an equivalent one using bosonic language. Since the original
model does not contain any eight electron terms, no quartic

bosonic coupling ̄a can exist at the UV scale k=�. In sum,
a set of possible “initial conditions” for the flow of the cou-
pling constants is given by

m̄a
2�� = U/3, h̄a�� = U/3,̄a�� = 0, Pa�Q��� = 0,

�Fd�� = 0, �d�� = d�d, ZF�� = 1. �8�

These values specify the action �� �or, equivalently, the
Hamiltonian� at the microscopic level.

At the microscopic scale �, the action for a is Gaussian
such that a can be “integrated out” by solving its field equa-
tion as a functional of �. The d boson decouples and be-
comes irrelevant. This demonstrates that �� indeed coincides
with the purely fermionic Hubbard model with repulsive
coupling U�0.

We still have to specify the truncation for the kinetic term
of the a-boson Pa�Q�. This is a central object of this paper,
since incommensurate antiferromagnetic fluctuations will
dominate if the minimum of Pa�0,q� occurs for nonzero q.
In order to gain some first information about the general
shape of Pa we compute the mean-field contribution from the
fermionic loop

�Pa�Q� = �
P

h̄a
2

PF�Q + P + ��PF�P�
+ �Q → − Q� . �9�

The general features of this mean-field contribution are used
in order to motivate the form of the bosonic propagator in
our truncation. We observe close to half-filling two qualita-
tively different situations. At half-filling and for sufficiently
high temperatures also close to half-filling there is a pro-
nounced minimum at q=0, see Fig. 1�a�. However, away
from half-filling the picture is different for sufficiently low
temperatures, see Fig. 1�b�. In the center at q=0 there is a
local maximum and there are four minima at positions

q1,2 = �� q̂,0�, q3,4 = �0, � q̂� , �10�

where q̂ is a function of T, �, and t�. This is a manifestation
of the dominance of incommensurate antiferromagnetic fluc-
tuations.

FIG. 1. �Color online� Mean-field kinetic term Pa�0,q� / t of the
a-boson as a function of spacelike momenta for U / t=3 and t�=0. In
Fig. 1�a� �=0 and T / t=0.205, in Fig. 1�b� � / t=−0.27 and
T / t=0.0435. Both temperatures are mean-field critical
temperatures.
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Once the minimal value of the inverse bosonic propagator
�Pa�0,q�+ m̄a

2� at zero frequency becomes smaller than zero,
the minimum of the free energy can no longer occur for
	a�Q�
=0. One rather expects spontaneous symmetry break-
ing with a nonzero expectation value of 	a
. As long as the
minimum of Pa�0,q� is located at q=0, the order parameter
	�a�
���q� indicates commensurate antiferromagnetism.
However, for a minimum at q=q j�0 the incommensurate
antiferromagnetic order breaks further lattice symmetries.
One of the pairs of minima �10� is selected and the symmetry
of rotations by 
 /2 around q=0 in momentum space is spon-
taneously broken. The spins change sign between neighbor-
ing lattice sites only in one direction, the x direction say,
whereas in the orthogonal direction the periodicity corre-
sponds to some momentum 
� q̂. The state with 	a
=0 be-
comes unstable when �Pa�min=−m̄a

2. In case of a second-
order phase transition this occurs for the mean-field critical
temperature T=TMFc. Figures 1�a� and 1�b� correspond to
mean-field critical temperatures. Note that the system selects
one of the pairs q1,2 or q3,4 since a�X� is a real field. There-
fore the system remains symmetric with respect to reflection
about the axes.

We are interested in whether incommensurate antiferro-
magnetism persists if bosonic fluctuations are included. Tak-
ing into account bosonic fluctuations, the critical temperature
vanishes in the infinite volume limit due to the Mermin-
Wagner theorem. The destruction of local order by the long-
range fluctuations of the Goldstone bosons �antiferromag-
netic spin waves� is only a logarithmic effect, however. For a
probe of finite macroscopic size antiferromagnetic order can
be observed and the critical temperature is nonzero.29 Here
the effective critical temperature Tc is defined such that for
T�Tc the typical size of ordered domains exceeds the mac-
roscopic size of the probe l. In other words, 	a�k�
 differs
from zero for kph= l−1 if T�Tc, while for T�Tc one has
	a�k�
=0.

In this note we only study the pseudocritical temperature
Tpc which marks the onset of local ordering corresponding to
a minimum of the flowing action �k for a�0,q�. Above this
temperature, 	�a�
=0 holds on all scales of the renormaliza-
tion flow. For T�Tpc local order sets in for k=kc�0. In case
of incommensurate antiferromagnetism we expect the forma-
tion of domain walls between regions where q̂ points in the x
or y direction. This contrasts with commensurate antiferro-
magnetism where only a continuous symmetry is broken for
a�0. For k�kc the flow should then be continued in a re-
gime with nonzero a in order to account properly for the
Goldstone boson fluctuations. This has been investigated for
the commensurate case in,29 but is not yet implemented for
the incommensurate case in the present note. We note that
Tpc is the equivalent of the mean-field critical temperature.
For Tc�T�Tpc the electron propagator does not exhibit a
true gap, but it is suppressed for momenta corresponding to
the inverse of length scales for which local order is present.

Inspired by the shape of Pa in the mean-field approxima-
tion we approximate the kinetic term for the antiferromag-
netic boson by

Pa,k�Q� = Za�2 + AaF�q� , �11�

where for the case of commensurate antiferromagnetism we
choose for F�q�

Fc�q� =
D2�q�2

D2 + �q�2 . �12�

Here �q�2 is defined as �q�2=qx
2+qy

2 for qi� �−
 ,
� and con-
tinued periodically otherwise. For small q2 the quadratic ap-
proximation Pa=Aaq2 describes a linear dispersion relation
for the composite bosonic field, �=�Aa /Za�q�, while for q
near the boundary of the Brillouin zone the momentum de-
pendence of Pa “levels off” as in Figs. 1�a� and 1�b�. For a
suitable choice of Aa and D the shape of the mean-field result
for Pa is well reproduced. Of course, due to the important
contributions of bosonic fluctuations beyond mean-field
theory, the actual values of Aa and D will differ substantially
from the mean-field values.

Within the functional renormalization group approach, we
describe the scale dependence of the bosonic kinetic term by
flow equations for the parameters Aa and D. For these pur-
poses we define the gradient coefficient Aa by

Aa =
1

2

�2

�l2 Pa�0,l,0��l=q̂ �13�

with q̂=0 in the commensurate case. The shape coefficient D
is computed as

D2 =
1

Aa
�Pa�0,
,
� − Pa�0, q̂,0�� . �14�

The flow equations for Aa and D can be extracted by insert-
ing our truncation in the exact flow equations for the kinetic
term �11�.

During the renormalization flow the gradient coefficient
Aa first increases, starting from Aa=0 at the scale �. At half-
filling and in the proximity of half-filling for sufficiently high
temperatures, Aa either increases monotonically or at least
remains larger than zero on all scales k��, see Fig. 2. The
minimum of Pa occurs for q=0 and commensurate antifer-
romagnetic fluctuations dominate.

However, for low enough temperatures and at sufficient
distance from half-filling, Aa becomes zero on a certain
scale. If we continued to evaluate Aa for q=0 it would de-
crease to negative values for lower scales. This situation cor-

FIG. 2. �Color online� Renormalization flow of the gradient co-
efficient Aa,k for U / t=3 and � / t=−0.12 according to Eq. �18� in the
parameter regime where we have commensurate antiferromag-
netism and therefore �kq̂=0. The solid line corresponds to
T / t=0.08, the long-dashed line to T / t=0.07, and the short-dashed
line to T / t=0.058.
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responds to the case of incommensurate antiferromagnetism.
The ansatz for the function F�q� given in Eq. �12� is no
longer suitable. One has to allow for the existence of minima
of Pa,k�0,q� at nonzero q�0. The ansatz �11� for the inverse
bosonic propagator employs now for F�q�

Fi�q, q̂� =
D2F̃�q, q̂�

D2 + F̃�q, q̂�
. �15�

The quadratic momentum dependence of the numerator in
Eq. �12� is replaced by an expression which is quartic in
momentum and explicitly includes the incommensurability q̂,

F̃�q, q̂� =
1

4q̂2 ��q̂2 − �q�2�2 + 4�qx�2�qy�2� . �16�

The first term in F̃ vanishes for �q�2= q̂2 and suppresses the
propagator for �q�2� q̂2. The second term favors the minima
�10� as compared to a situation where rotation-symmetry in
the qx-qy-plane is preserved. The prefactor is determined by
Eq. �13�. For q̂→0 one has Aa� q̂2 such that Pa becomes
quartic in q. We compare in Fig. 3 the kinetic term Pa�0,q�
in mean-field theory with the approximation from our ansatz
which shows satisfactory agreement.

In Fig. 4, a typical flow for Aa and q̂ in the incommensu-
rate regime is displayed. For scales below the scale where Aa

becomes zero, q̂ increases to a finite value and Pa�0,q� has
four degenerate minima at positions given by Eq. �10�. The
solution q̂ of Eq. �20� at the end of the flow corresponds to
the position of the minimum, e.g., at the positive qx axis. We
next specify the flow in more detail.

The regulator function Rk
a�Q� for the antiferromagnetic

fluctuations should be adapted in order to allow for the domi-
nance of incommensurate antiferromagnetism. We employ,
similarly for the commensurate and incommensurate case,

Rk
a�Q� = Aa · �k2 − Fc,i�q, q̂����k2 − Fc,i�q, q̂�� , �17�

respectively. This generalizes the cutoff chosen in Ref. 33.
The flow equation for the gradient coefficient is obtained

by taking appropriate derivatives in one of the minima

�kAa = �
Q

h̄a
2�̃k

�2

�l2 1

PF
k �Q�PF

k �K + Q + ��


l=q̂

+ �
Q

h̄a
2��kq̂�

�3

�l3 1

PF
k �Q�PF

k �K + Q + ��


l=q̂

,

�18�

where K= �0, l ,0�. We have defined PF,k�Q�= PF�Q�+Rk
F�Q�,

with fermion cutoff Rk
F chosen as in Ref. 33. The first term in

Eq. �18� results from the change of the infrared cutoff in the
fluctuations. The symbol �̃k means a formal derivative with
respect to the cutoff function Rk

F. The second term in Eq. �18�
reflects the shift of the location of the minimum of Pa at
�q̂ ,0� and is absent if commensurate fluctuations dominate,
q̂=0.

A flow equation for the position of the minima q̂ is de-
rived from the condition

�

�qx
Pa,k�0,q��q=�q̂,0� = 0. �19�

Taking the scale derivative of this equation one obtains the
flow equation,

��kq̂�
�2

�qx
2 Pa,k�0,q��q=�q̂,0� +  d

dk


q̂

�

�qx
Pa,k�0,q��q=�q̂,0�

= ��kq̂�2Aa +  d

dk


q̂

�

�qx
Pa,k�0,q��q=�q̂,0� = 0. �20�

Flow equations for the other running couplings

ZF , m̄a
2 , ̄a , h̄a , m̄d

2 , ̄d , h̄d ,D are not given explicitly here, see
Ref. 33.

We now turn to the results obtained in our renormalization
group scheme. An overview of the occurrence of incommen-
surate antiferromagnetism is given in Fig. 5, showing pseud-
ocritical temperatures Tpc for the different kinds of antiferro-
magnetic order in the presence of vanishing �upper panel�
and nonvanishing �lower panel� next-to-nearest neighbor
hopping t�. The solid line signals the onset of local commen-
surate, the long-dashed line the onset of local incommensu-
rate antiferromagnetic order. Below the short-dashed line
there is no local magnetic order but incommensurate fluctua-
tions dominate. Below the point where the short-dashed line
terminates at low temperatures, numerical solutions to the

FIG. 3. �Color online� In �a� the mean-field approximation for
bosonic kinetic term Pa�0,qx ,0� / t is shown as a function of
the x component of spatial momenta. Parameters are U / t=3,
� / t=−0.35, t�=0, and T / t=0.1. Figure 3�b� shows the same quan-
tity according to our approximation given by Eqs. �11� and �16�
with the values of Aa, q̂, and D drawn from the mean-field
computation.

FIG. 4. �Color online� Renormalization flow of the gradient co-
efficient Aa,k and the incommensurability q̂ according to Eqs. �18�
and �20� at � / t=−0.12 and T / t=0.05, where incommensurate anti-
ferromagnetism dominates. The solid line shows Aa decreasing to
zero at −ln k / t=3.09 and increasing again when the incommensu-
rability q̂ �short-dashed line� sets in.
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flow equations, as we have implemented them numerically,
are no longer reliable. For both vanishing and nonvanishing
t�, one observes commensurate antiferromagnetism for a cer-
tain range of chemical potential �, while for smaller and
larger values of � incommensurate fluctuations begin to
dominate. For finite t�, however, the pseudocritical curve is
no longer the same for positive and negative � but, for nega-
tive t�, is shifted to more negative values of �.

The pseudocritical temperature is found to be substan-
tially lower than according to the mean-field computation.
For U=3t, t�=0, and �=0, for example, the mean-field com-
putation gives TMFc / t=0.205, while we find Tpc / t=0.0745
when one takes into account bosonic fluctuations. By reduc-
ing the interaction, the shape of the pseudocritical curve re-
mains the same but local order emerges only at lower tem-
peratures.

With decreasing temperature the tendency toward incom-
mensurate fluctuations is increased, which can be demon-
strated by studying the dependence of q̂ on T at fixed chemi-
cal potential. It is shown for � / t=−0.105 and � / t=−0.12 in
Fig. 6. For large enough temperatures one has q̂=0, while
below some �-dependent temperature incommensurate anti-
ferromagnetism sets in. The temperature where this happens
is indicated by the short-dashed line in Fig. 5 �upper panel�.
For smaller T the value of q̂ increases, the final point of the
� / t=−0.105 curve at low temperature corresponds to the
long-dashed line in Fig. 5

As one can see from the curve representing � / t=−0.12 in
Fig. 6, at small temperatures the size of the incommensura-
bility is approximately constant. Therefore we compare our
result to the zero-temperature result obtained in Ref. 8 saying
that q̂=2 arcsin���� /2t� �which has also been used in the fer-
mionic renormalization group computation given in Ref. 36�.
For � / t=−0.12 this formula gives q̂�0.120 whereas we find

q̂�0.132. By taking into account fluctuations the incommen-
surability seems to be slightly enhanced. Agreement with the
results displayed in Ref. 12 obtained by means of the com-
posite operator method is also satisfactory.

A dominance of incommensurate antiferromagnetic fluc-
tuations can be observed in the momentum dependence of
the magnetic susceptibility and the bosonic occupation num-
ber. The susceptibility is given by the bosonic propagator at
zero frequency Pa

−1�0,q�, while the occupation number is
obtained by an additional sum over bosonic Matsubara fre-
quencies, na�q�=T��B

�Pa��B ,q��−1. Figure 7 shows that for
parameters where the bosonic mass is small, here
m̄a

2 /U�10−2, and thus close to the onset of local incommen-
surate order, both the magnetic susceptibility and the bosonic
occupation number are peaked at qx= � q̂, signaling that in-
commensurate fluctuations strongly dominate. The situation
is completely analogous for the qy dependence of the suscep-
tibility at qx=0, whereas both quantities do not have such a
pronounced peak structure along the Brillouin zone diagonal.

In those regions of the phase diagram in which �either
commensurate or incommensurate� antiferromagnetic order
exists on a certain length scale k our truncation becomes
inapplicable in the regime below k. The simplest way of
obtaining a glimpse at these regimes is by means of a mean-
field analysis, so before closing the discussion we briefly
address this problem. A more extensive mean-field treatment,
if only with regards to the commensurate case but including

FIG. 5. �Color online� Renormalization group results for the
pseudocritical temperature Tpc / t as a function of � / t, given by the
solid �commensurate� and dashed �incommensurate� lines. Results
are displayed for U / t=3, t�=0 �upper panel� and t� / t=−0.05 �lower
panel�.

FIG. 6. �Color online� Renormalization group results for the
incommensurability q̂ as a function of T for U / t=3, t�=0, and
� / t=−0.12 �solid line� and � / t=−0.105 �dashed line�.

FIG. 7. �Color online� Figure 7�a� shows the spin susceptibility
�Pa�0,qx ,0� / t�−1 and Fig. 7�b� the bosonic occupation number
na�qx ,0� for � / t=−0.12, T / t=0.01, U / t=3, and t�=0 according to
the renormalization group computations. Both curves are given as a
function of spatial momentum in x direction. A peak at qx=0 would
signal the dominance of commensurate antiferromagnetism. The ac-
tual peaks, located at q̂= �0.132, indicate incommensurate
antiferromagnetism.
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a nonzero next-to-nearest neighbor hopping t�, is given in
Ref. 40. Here one has to take into account that the periodicity
of a system in the Néel state is changed resulting in a new
“magnetic” Brillouin zone whose boundaries are given by
the lines between the ��
 ,0� and �0, �
� points. Corre-
spondingly, the mean-field dispersion relation for a nonzero

gap parameter A= h̄a	�a�
 has two branches

E��p� =
1

2
���p� + ��p + �� � ����p� − ��p + ���2 + 4A2�

�21�

which, for finite t�, lead to an interestingly structured effec-
tive Fermi surface enclosing hole pockets around
��
 /2, �
 /2� and electron pockets around ��
 ,0� and
�0, �
�, see the example drawn in Fig. 8�a�, for further
details see, e.g., Ref. 40.

In the presence of a nonzero expectation value 	a�q̂�
 with
q̂�0, i.e., in the presence of incommensurate order, the in-
verse of the fermionic mean-field propagator at zero fre-
quency has contributions from Eq. �3� �with ZF=1� and Eq.
�7� and is given by

PF�q,q�� = ��q���q − q�� −
A · �

�2

����q − q� − � + q̂� + ��q − q� − � − q̂��
�22�

with q̂=q1,2 or q̂=q3,4 as defined in Eq. �10�. The analog of
the Fermi surface corresponds to the zero eigenvalues of PF.
However, the corresponding eigenmodes are no longer mo-
mentum eigenstates. Nevertheless, if the gap parameter A
= �A� is nonzero but small, many eigenvalues of PF�q ,q��
have most of their support each at a single momentum p.
This concerns all those momenta p for which the condition

A � ���p + � + q̂��, ���p + � − q̂�� �23�

is fulfilled. With respect to these momenta the equation

��p� −
A2

2
� 1

��p + � + q̂�
+

1

��p + � − q̂�
� = 0 �24�

defines an effective Fermi surface which is obtained by �ap-
proximately� diagonalizing PF�q ,q�� for small A. For large
enough A the effective Fermi surface vanishes completely
because the number of solutions to Eq. �24� that satisfy the
condition �23� rapidly goes down. In Fig. 8�b� the effective
Fermi surface is shown for the incommensurate case with an
order parameter 	a�q̂�
 where q̂=q1,2, i.e., the incommensu-
rability is along the x axis. The symmetry of rotations by

 /2 is manifestly broken.

To summarize, we have shown that incommensurate anti-
ferromagnetic order in the two-dimensional Hubbard model
persists if bosonic fluctuations are taken into account. This
phenomenon occurs at least in the form of local order for
temperatures smaller than the pseudocritical temperature
shown in Fig. 5. We speculate that for T→0 the size of the
incommensurate domains grows beyond the size of typical
macroscopic probes, but this remains to be shown. If mag-
netic fluctuations play a role in the generation of d-wave
superconducting order, the effect of incommensurability has
to be taken into account.
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